
上記画像クリックでアマゾンでの詳細情報
大学への数学シリーズの少し難易度の高い本のレビューです
評価は星三つ
☆☆☆★★
http://www.amazon.co.jp/exec/obidos/ASIN/B00BGE48O8/axaxawaw-22/ref=nosim/
数学の問題を眺めると,そこには「分野」という要素と「ものの見方」「考え方」という要素があることが分かります.各分野で典型的な問題は個別「分野」の要素がほとんどですが,融合問題になると「ものの見方」「考え方」という要素の方が強くなってきます.この「分野」を縦糸,「ものの見方」「考え方」を横糸に喩えれば,従来の参考書はそのほとんどが「縦糸一筋」でした.もちろん,個別単元の学習は大切なのですが,それだけでは足りないものがある.そうした観点から,いわば「横糸」に特化した参考書は作れないかなあ,と考えていたところ,東京出版の編集部から,「以前書いたものをまとめた書物を作りませんか」といわれてとびついてできたのが本書です.
もちろん横糸一筋で入試に成功するわけはなく,単元別のしっかりした基礎の上に,横糸も加えると全体としてしっかりとした織物になるわけですが,かつての参考書は「縦糸系」ばかりなので,たまにはこのような「横糸系の読み物中心の書物」も悪くないでしょう(と自画自賛する?).
(本書「あとがき」より抜粋)
もちろん横糸一筋で入試に成功するわけはなく,単元別のしっかりした基礎の上に,横糸も加えると全体としてしっかりとした織物になるわけですが,かつての参考書は「縦糸系」ばかりなので,たまにはこのような「横糸系の読み物中心の書物」も悪くないでしょう(と自画自賛する?).
(本書「あとがき」より抜粋)
んー 数学が好きな人が取り組む本ですね
これといって実力アップが望める本ではないと思います
全13章からなっていてそれぞれの章で独立しているんですね、前から通読ではなく自分が気になる部分だけ潰すのでも良いかもしれません
分野としては整数、不等式に関する内容が充実しています
とはいっても、はたしてこの本で得た知識やテクニックが受験で役立つかは少し怪しいです
そもそも、基本問題、標準問題というのは手法としての難しさよりもその頻出度で決まります
それ以上のテクニックともなると、一年間に滑り止めを含めて何校も受けたとしても全く出番がないことなんてザラなんですね
この本もそういう部類の本だと思います
だからこそ、この手の本に手を付けるときは自分の大学の過去問を研究し、分野や難易度的にその本を使う必要があるのかを知る必要があるんですね
この本の場合は、上にも書いた、整数分野や不等式に関して重たい問題を出題するところを受験する人であれば読んで見ても損はないかもしれません
また、解答を掲載していない問題(眺めるだけの問題)もあるので、従来の問題集というよりは、一歩上の知識を仕入れるための読み物としての利用も面白いかもしれません
それなので、手を付けるとしても使用するとしても網羅型の参考書やある程度の問題演習を終わらせた後がオススメです